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AbslracL It i s  argued that the optical conductivity of face-centred icosahedral (FCI) 

quasisrystals is dominated by band-SlNCture effens. No mechanism peculiar to 
quasi-periodicity is necesMly to explain experiment which is accounted for by semi- 
phenomenological penurbation theory. What makes FCI quasiaystals different from 
conventional metallic alloys is the high multiplicity (namely, 42) of their reciprocal laltice 
vecto& which allow a better match beiween the Fermi sphere and the corresponding 
set of Bragg planes (the 'quasi-Briilouin zone'). Th is  eiiect i s  also responsible for a 
strong reduction in the DC conductivity through a substantial optical mas increase, 
rather than anomaivusly strong scattering localization. The low DC conductivity, in tum, 
means that the weak Drude pan of the AC conductivity is overwhelmed by stronger 
interband absorption, resulting in a suppression 01 lhe Drude peak. OtheNise, however, 
the interbond absarption peak in an FU quasicrystal i s  not significantly different from 
those in convenuonal metals. 

A notable feature of quasi-crystals (besides the 'forbidden' icosahedral symmetry and 
sixdimensional geometry used to describe their structure) is their surprisingly low 
electrical conductivity. While mostly composed of good metals, such as AI, Cu and 
Fe, quasi-crystals exhibit D C  conductivities which can be thousands of times smaller 
than the conductivity of their constituents [l]. Not only is the  conductivity low, but 
its temperature dependence is also quite unusual Cor metals: the conductivity declines 
significantly at low temperatures. Further, as the levels of impurity concentration and 
the structural imperfection are lowered, the conductivity follows suit [Z]. The best 
quality ('defectless') samples of face centred icosahedral (FCI) quasi-crystals, such as 
AI,,,,Cu,Fe,,,, and AI,,Cu,,Rul~, have conductivities as low as 40 R-' cm-' [ l ,  21 at 
4 K (to be compared with approximately lo7 R-' cm-' for the pure constituents, and 
lC? R-' cm-' for a metallic glass of the same composition). 'Qpical conductivities 
appear to fall far below Mott's minimal metallic conductivity: the mean free path, 
estimated in a standard manner with a spherical Fermi surface and density of states 
(DOS) as derived for free electrons, appears to be as IOW as 1 A 111. On the other 
harid, quasi-crystals are by no means insulators; they might rather be classified as 
semimetals. Other electronic properties (Hall effect, thermopower, heat capacity [l], 
optical absorption [3], etc) are also far from usual. 

Although the transport properties are not completely understood theoretically, the 
proposed qualitative explanations fail into two major categories: firstly, wavefunction 
localization or critica!ity, and secondly, band structure effects in the Hume-Rothery 
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picture. The former is based on an assumed inapplicability of the Bloch theorem 
to the quasi-periodic case, which through associated disorder might open a path to 
a localization of some kind. In fact, before addressing the transport properties in 
general it is worth understanding the basic properties of the one-electron spectrum. 
The major question is this: are eigenfunctions of electrons at a given energy in a 
quasi-periodic potential localized or extended? ?b date, the answer is still unknown, 
except for the one-dimensional case, where wavefunctions are ‘critical’, i.e. neither 
localized nor extended 141. Both outcomes are in principle feasible in two and three 
dimensions. One cannot exclude the Bloch picture outright solely on the basis of 
the lack of periodicity; even in a quasi-periodic potential, the eigenfunctions might 
happen to be extended and if so they can be cast in the familiar Bloch form with the 
only distinction from the periodic case traced to the fact that the momentum k cannot 
be reduced to a single Brillouin zone because of the absence of a smallest reciprocal 
lattiee vector. Thii difficulty is easily avoided by the use of an extended-zone scheme. 
(A one-dimensional example of such behaviour has been found analytically, long ago 
[SI.) On the other hand, the solution of a quasi-periodic Schrodinger equation might 
well result in criticality similar to  the one-dimensional case, or even in localization. 
In fact, arguments c a n  be advanced for both criticality [6] and localization [7]. Here 
we do not address this question directly. Instead we argue that it is not necessary 
to invoke any of the various localization pictures in order to explain the anomalously 
low DC conductivities. Instead, the aim of this paper is to explain the experimentally 
obsewed DC 11, 21 and AC conductivities [3] within the framework of the alternative 
‘band-structure hypothesis’ [l,  8, lo]. 

The band-structure approach does not address the quasi-periodic Schrodinger 
equation at all; the existence of a quasi-momentum k is taken for granted (i.e. there 
is no localization, at least near the Fermi surface). In this approach, anomalously 
low conductivity is attributed, not to a short mean free path, but to an extremely 
low DOS at the Fermi level (as in semimetals). The low DOS, in turn, is believed 
to be a consequence of the Hume-Rothery electronic stabilization mechanism [I, t% 
lo], which implies a close contact of the Fermi surfacc with several B r a g  planes, 
whose associated reciprocal lattice vectom G satisfy 2k, % G, where IC, is the Fermi 
wavevector. Interaction with the Bragg planes results in the opening of pseudo- 
gaps and then to a related reduction in energy. There is experimental and theoretical 
evidence that gives partial support to this scenario, but it is not completely convincing. 
The first is a strong dependence of conductivity on thc alloy composition, as reported 
in 11, 21. The proposed pseudo-gaps are rather narrow, but the DOS at the minimum 
is also quite low, from which it follows that the slope of DOS is steep (figure 1). 
Accordingly, even small variations in composition, which shift E,, can cause large 
changes in the DOS and the conductivity. There is direct evidcnce of a low DOS; 
both specific heat measurements [I] and soft-x-ray emission and photoabsorption 
experiments Ill] reveal very small values. Theoretical efforts also tend to support the 
hypothesis, including fairly realistic band-structure calculations for specific alloys [lo, 
12, 13, 261. However, such calculations are complicated by thrcc significant obstacles. 

Firstly, existing computer algorithms rely on periodicity. 
Secondly, the actual atomic structures of quasi-crystals are still largely unknown. 
Thirdly, the best quasi-crystals contain transition metal atoms with complexities 

For these reasons calculations have generally been made on periodic approximants 
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arising from d bands near the Fermi energy. 
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of FCI quasi-crystals. The calculations [12, 13, 261 tend to show a prominent pseudo- 
gap near the Fermi surface and a strongly suppressed DOS. Unfortunately, even low- 
order 1/1, lL2 approximants still contain several hundred atoms in a unit cell which 
makes direct band-structure calculations numerically intensive. Not surprisingly, the 
calculation of properties (e.g. optical absorption) even for low-order approximants 
shares the same difficulty. Fortunately, it appears that these direct methods can 
be avoided. The existing experimental optical data [3, 271 are at least partly 
explicable byperfurbation fheoty with the use of near& free elecfrons in an effective-mass 
framework. This constitutes the second claim of the present paper: we suggest that 
wavefunctions (at least not too far from EF) are  not merely extended but are also 
representable as linear combinations of a small number of plane waves, mixed by a 
quasi-periodic pseudopotential. This interesting property was first noticed in direct 
numerical calculations [12] and has been confirmed recently in similar band-structure 
calculations 1131 (the latter being carried out on impressive S l 3  approximant of 12000 
atomsicell). The role of d electrons, which are clearly important in the understanding 
of the pure transition metal constituents is not completely clear. Experiment 1111 
and band-structure calculation [26] both indicate the presence of d band peaks in 
the DOS, but they are at 6 eV (Cu) and 2 e V  (Fe) below the Fermi energy. The 
presence of some d character at the Fermi level cannot be excluded [26], however, 
we shall assume that d electron effects do not seriously affect the transport and optical 
properties. 

I 

Figure 1. DOS versus energy (the pseudo-gaps do 
not overlap): ..-- preferred position of Ihe Fermi - -  

A ?  A ,  E Iwel. 

It should he emphasized that the present work is not a band-structure calculation 
per se; we do not attempt to calculate the spectrum from first principles (as is done in 
[12,13,26]), but we presume that there are some pseudo-gaps near the Fermi energy. 
Our intent is to relate their widths and positions to the optical conductivity .(U), 
which is reported in [3]. The evident agreement with experiment appears to be 
reasonable corroboration that a simple perturbation theory approach is meaningful. 

To begin with we must justify the claim made that 2k, is of order G, a reciprocal 
lattice vector. This will be done in two ways, with the same results. The first method 
is direct: we apply the conductivity sum rule 
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to the experimentally measured u ( w )  [3]. From this we obtain a plasma frequency up 
equivalent to 12.7 eV and a corresponding ne = 1.2 x l@’ electrons ~ m - ~  and, hence, 
a Fermi wavevector k, = (3?rzn,)”’ = 1.52 A-i. The second argument stems from 
an extensive study of stability of different FCI quasi-crystals [14]; the major claim of 
this study is that all FCI quasi-crystals, independent of their chemical composition, are 
most stable at 1.75 electrons/atom and when the Cu content is twice the transition- 
metal content. %ai et al 114) used a negative effective valence of the transition metal, 
e.g. -2.85 for Fe in the well known quasi-crystal A16,,5Cu~Fei2,s, which we are going 
to deal with below. (We believe that a similar mechanism with slightly different values 
of parameters applies to other stable FCI quasi-crystals.) An interesting explanation 
of this long-standing negative effective valence hypothesis , based on a generalized 
impurity Hubbard model, has recently been given 1261. Multiplying the above average 
valence Z = 1.75 by the number of atoms n, per unit volume, we obtain an 
electron density ne = Zn,. The number density n, is, in turn, derived from the 
experimentally measured mass density of A1,,5Cu,Fe,,,, of 4.5 g cm-, [15]. This 
gives ne = 1.2 x lb’ e and 2k, = 3.05 A-,, in agreement with the direct 
method. We may notice that this value is very close to the positions of two strongest 
peaks in the A1,,,sCuzFe,,,, diffraction pattern: G I  = (4 ,2 ,2 ,2 ,2 ,2 )  = 2.98 A-’ 
and G ,  = (4 ,4 ,2 ,0 ,0 ,2 )  = 3.13 A-’. The first peak is in five-fold direction and 
has multiplicity 12; the second peak is in the two-fold direction, with multiplicity 
30 [16]. Accordingly, the (originally spherical) Fermi surface is most influenced by 
the 42 closest and ‘strongest’ Bragg planes. Note that, although reciprocal lattice 
vectors are known to fill the space everywhere densely, thereby creating a denre 
set of Bragg planes, not all of them are of physical importance. Components of 
the pseudopotential V, decrease rapidly with increase in the magnitudes of thc six- 
dimensional reciprocal lattice vectors G, and for this reason only a few strongest 
components are of physical significance. The others (the majority) are weak and can 
be neglected (see [SI). Since V, is proportional to the geometric structure factor 
S,, only those G-values that are prominent in the diffraction pattern can contribute 
substantial V,; the B r a g  planes associated with faint diffraction peaks are of far less 
importance. For these reasons we neglect all the Bragg planes except the strongest, 
which number 42 in all. For each Bragg plane in this group the electron energy in its 
vicinity is given by 

E(k)  = E (“’(k) + f A  (Y f m) (2) 

where A = 2V, is the width of the corresponding pseudo-gap, Eu = E(”)(G/2) 
and k,, is,a component of L in the G direction. We assume that the gaps AI and 
A*, associated with G, and G,, respectively, are small enough so that regions of 
k-space, where corrections (2) to the free electron spectrum E ( ’ ) ( k )  are substantial, 
do not overlap; contributions from the 42 Bragg planes are then additive. This 
proposition does not mean that the pseudo-gaps A ,  and A, do not overlap on the 
E-axis; they might do so or not, depending on the relative values of A,  and A, 
and their positions (figure 1). The additivity (i.e. linearity) assumption simply means 
that the flat regions on the Fermi surface (figure 2) do not overlap. The particular 
shape of the Fermi surface depends on E, and the pseudo-gap parameters; figure 
2 sketches the situation for the case where E, lies inside the upper pseudo-gap 
(associated with G, = 3.13 k l ) .  In what follows the actual Fermi level is treated 
as an adjustable parameter, because it is a function of the alloy Composition. It is 

S E Burkov et a1 
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only required by the Hume-Rothery rule to be somewhere near the pseudo-gap [% 
101. The strongest suppression of the DC conductivity is reached when E, coincides 
with the DOS minimum, i.e. the upper edge of the second pseudo-gap. This position 
is also favourable from the Hume-Rothery point of view and for these reasons we 
will often use EF = E("l(GJ2) + A 2 / 2  as a preferred value. Because of thermal 
expansion the pseudo-gaps will be functions of temperature and, since much of the 
Fermi surface. is obliterated, this is not necessarily a small effect (and may well be 
involved in the increase in conductivity with increasing temperature). 

Figure 2. Pmposed Fermi surface of a FCI quasi- 
crystal (exlended-zone scheme). Ring-like Ral spots 
are associated wilh the lower pseudo-gap A, and 
circular spots with A,. If  the reduced zone scheme 
were applicable, the caps on the ring-like Rat spots 
would be in Ihe second Brillauin zone. 

The situation that we have arrived at is rather similar to one in, say, AI or 
indeed an alloy of nearly free electron metals. When dealing with one particular 
Bragg plane nothing specifically quasi-crystalline emerges; we do not rely on quasi- 
periodicity itself. What makes the electronic properties of quasi-crystals quite distinct 
from those of crystals is the icosahedral symmetry of the former. We argue that 
each individual flat region on the Fermi surface is not significantly larger than 
might be found in an alloy of free electron metals and can be treated in the 
same manner, but here there are 42 such regions and the key issue is the high 
multiplicity of icosahedral reciprocal lattice vectors. This statement is supported 
by the recently observed resemblance of the transport properties of crystalline and 
quasi-crystalline modifications of AlMnSi [17, 271. The DC conductivity of a-AIMnSi, 
a low-order rational approximant of icosahedral AIMnSi, is as low as it is in quasi- 
crystalline r-phase. Furthermore, exactly as for the quasi-crystals, the DC conductivity 
decreases in better-quality samples [17], aod for both the optical properties are actually 
quite similar [27]. The approximant phase is undoubtedly periodic, and localization 
mechanisms specific to quasi-periodicity should therefore not apply but, on the other 
hand, its structure is almost icosahedrally symmetric, and this therefore opens a 
path to Fermi surfaceBragg plane interaction mechanism as described above. The 
deviation from the icosahedral symmetry in a-AIMnSi is rather small and the Bragg 
planes are located in positions very close to those of the icosahedral phase, permitting 
effective contact with the Fermi sphere. 

Accordingly, we treat the effect of a single small pseudo-gap on DC and AC 
conductivities in the same manner as in conventional crystalline polyvalent metals. 
The latter problem was solved 20 years ago by Ashcroft and Sturm [18] who employed 
perturbation theory. Hcre we mainly apply the results of that work to a new substance, 
but with extended calculations performed in the spirit of [18]. 

The DC conductivity can be written as 
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U = -e2r-  4n3h 1 1, v d S  = do) - 5 6uj 
1 

j = 1  
(3) 

where r is a relaxation time, the integral is taken over the Fermi surface, is an 
unperturbed free electron value of U and 6uj are corrections from 42 (independent) 
flat regions on the Fermi surface. Before proceeding, it is important to note that the 
flat regions are actually excluded from the integral in equation (3). (In the familiar 
reduced-zone scheme they do not exist a t  all.) So, the larger the flat regions, the 
lower is the conductivity. A very crude approximation then suggests that 

However, the Fermi velocity is not constant on the Fermi surface and more accurate 
calculations are needed. A single term in equation (3) is calculated by the method in 
section V of [18] to give 

where 

uI = (l/6rrz)(ezC/li) - 1200 ('2 cm)-' b = h / r A  w = (6) 

= E u / A  e~ = EF/A wo = 2(eF - E ~ ) .  

It is seen from equations (2) and (6) that w is simply a dimensionless splitting between 
the upper and lower branches of the perturbed spectrum in the vicinity of a Bragg 
plane and s ( w )  is a dimensionless area of the Fermi surface cross section, which 
consists of points h such that E ( h )  < EF and E ( b  + G) > E,; it is introduced to 
represent the integrals over the three-dimensional k-space as integrals over kll and 
IC, [U]. Note that s( 1) is the area of the flat region on the Fermi surface. 

Integral (5) is straightforward to calculate: we obtain 

(where terms containing 1/8eu z A / 8 E ,  K 1 are neglected). The expressions in 
parentheses, although parameter dependent, are of the order of 1 and do  not affect 
the magnitude of the final result; accordingly, 

U E U(') - 42Cua/4b C 2 1. (9) 

Here U(" )  and the correction 60 take the forms 

U(') = ( 1 / 6 r Z ) ( e 2 2 1 C F / h ) ( 2 E F / h ) r  6u = ( 1/6a2)(eZG/h)42(C/4)(A/h)r. 

('0) 
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If we estimate EF - 9 eY we can easily see that a pseudo-gap A of about 0.5 eV is 
enough to reduce the conductivity to virtually zero. Once again, the key issue in this 
picture is the factor of 42, arising from the high multiplicity of icosahedral diffraction 
peaks, which enhances the correction 6u in equation (10). The crude estimate that 
we present here surely cannot be used for very low conductivities because, when 
the correction becomes almost equal to the original value of U, our assumption of 
flat-area additivity is no longer valid. However, equation (10) clearly shows that 
even reasonably small pseudo-gaps (of about 0.5 eV or, in other words, &EF) are 
sufficient to make almost the entire Fermi surface flat, reducing the conductivity to 
a very small value. Note that pseudo-gaps were found in [ll-131 to be about 1 eV; 
so our 0.5 eV values do not look too large. More accurate results are obtained by 
using equations (3) and (7) with two different pseudo-gaps A, and A,. The use Of 
different parameters and smaller A-values (of about 0.3 ev), which still allow us to 
stay in the linear range, however, give results similar to the estimates of equations 
(9) and (10); the conductivity can be very strongly reduced, down to approximately 
500 R-' cm-', which is just the value found in [3]. 

The DOS is obtained in a standard manner within the same perturbation approach 
(2). The result depends on parameters, and a reasonable possibility is shown in 
figure 1. A rough idea of the orders of magnitudes can be obtained by estimating the 
minimal value of the DOS U from 

U - u(")(l- 42A/8EF). (11) 
Substituting A - 0.5 eV, which, according to equation (10). reduces the conductivity 
to almost zero, gives a rather moderate DOS reduction of about 33%. (An  even larger 
reduction of about 60% was given in 11. 11-13].) Although our estimate (11) is quite 
approximate, it explains an old paradox: according to [l, 11-13] the DOS is reduced 
by a factor of 3 only, whereas the conductivity is changed by a factor of 100 or even 
more [I]. The simple formula usually used for DC conductivity is 

but it is, in fact, a particular case, derived from a more general expression (3) provided 
that the Fermi surface is spherical and vF is constant. In FCI quasi-crystals this is 
certainly not the case; the Fermi surface is far from spherical (figure 2) and vF is 
also by no means constant. Further, not only is the DOS uF small, the Fermi velocity 
vF is also small. So, the oversimplified formula (12) does not apply to this case; the 
use of the more accurate expressions (9) and (11) shows that the  reduction in the 
conductivity is not merely proportional to the DOS. 

The AC (optical) conductivity is, as usual, a sum of an intraband (Drude) term 

(where U" is the DC conductivity; see above), and an interband term, calculated by 
making use of the Kubo formula (equation (14) of [MI) 

U I B ( W ) =  3mziwV C [ (Et (k )  - C-(k)]z 
e2h I ~ (k )12 ( f iw )2  

k 

) 
1 1 

X (E,(k) - E-(k) - h(w + i/.) -k Et(k) - E - ( k )  - h(w + i/.r) 

(14) 
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where M ( k )  = ( $ + ( k ) l V l @ - ( k ) ) ,  the E(k) are given by equation (2) and T is a 
phenomenological relaxation time. This interband r can differ from the relaxation 
time appearing in the Drude part, but usually the difference is not too large [18]. 
(The generalization for two different r-values is obvious.) The introduction of a 
relaxation time T into equation (14) is a physical necessity. In FCI quasi-clystals, as in 
AI [18], parallel bands are present (figure 3). Their occurrence makes the situation 
similar to the one-dimensional case: in the absence of scattering the conductivity at 
the absorption edge diverges [18]. For this reason the magnitude of the interband 
maximum displays both strong T and temperature dependences [20]. 

S E Burkov er a1 

The contribution to ulH(w) from a single Bragg plane differs little from the 
corresponding contribution in AI [MI, namely 

(15) 
m 1 s (w)dw 1 w 4  +2(62 - z 2 ) w 2  + (bZ + zz)2 ~ 2 -  

= 

where z = h w / A  is a dimensionlcss frcqucncy, and the other variables are defined 
in equations (6) and (7). The total uIH(w) is simply the sum of contributions from 
12 pseudo-gaps A, and 30 pseudo-gaps A2. The integral (15) can be given in closed 
form and is given in [NI. Figure 4 gives a better idea of what it is. In the case of 
A162.5Cu25Fe12.5 the theoretical result (15) fits the cxpcrimcnt [3] quite well with A - 
0.5 eV and r - 0 . 5 ~ 1 0 - ’ ~  s, which gives the value of 6 = fi/sA - 3. The b >> I, 
and wu >> 1 limits of equations (15) are quite simple, namely 

u(w)  = ~ , ( . / 2 ) ( A / h ~ ) ( ( w r ) ’ / [ l +  ( w ~ ) ’ ] ~ } .  (16) 

We can see in figure 4 that even this limiting form agrees with the experiment 
quite well; the best fit is achieved with A = 0.45 eV, and T = 0 . 4 7 ~ 1 0 - ’ ~  S 

(r = f i /r  = 1.4 eV). Equation (16) contains only two parameters namely A and 
r(ua - 1200 n-’ cm-I is a constant; see equation (6)). The function has a maximum 
at w = l /r ,  for which gmir = U,( n /S) (A/h ) r .  (After A and r have been obtained 
by fitting the position of the maximum, there are no further parameters to adjust; 
nevertheless the agreement remains good.) Note that the value of A - 0.5 eV is in 
remarkable agreement with the estimate (10) obtained from the DC conductivity. It 
is also worth mentioning that in the case b = r / A  >> 1 the interband peak occurs at 
hw = r = h / r ,  and not at fiw - A, as is usually the case. 
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Pigum 4. Conductidly a ( w )  of 
Alp.lCu~~Fe,~.l: ---. fit with equa- 
tion (16). 

The phenomenological relaxation time of 7 2 0.5 x s obtained above by 
fitting the optical data 131 with equation (16) is rather short; it is about eight times 
shorter than in pure Al. Although we do not yet know the precise origin of such strong 
scattering, we may suggest certain mechanisms. First, it should be noted that there are 
two factors cutting off the parallel hand divergence: scattering, phenomenologically 
described by 7, and deviation from parallelism. As discussed in [I91 the latter is 
not a trivially small effect, but can nevertheless be roughly described by introducing 
corrections to the approximate formula (2). Such corrections could also include 
mixing of more than two plane waves, energy dependence in pseudoptentials, etc. 
In any event, the bands are no longer parallel and the peak intensity becomes finite 
even wilhouf scattering. The combined effect of both non-parallelism and scattering 
is even more pronounced. Sometimes it is not easy to separate these WO effects, 
and a certain fraction of the fitted phenomenological 7 might originate not from 
scattering at all but from non-parallelism [19]. In this case the true scattering time 7 

is longer than the fitted value of 0.5 x lo-’’ s. Another possible reason for stronger 
scattering than in AI is the complexity of the alloy. For example chemical disorder 
is reported in Al,,,5Cu,Fe,,.5; there are positions where Cu and Fe are randomly 
mixed [21]. Disorder of this type is well known to be responsible for rather large 
residual conductivities in regular alloys. Other structural disorder could be present 
in the samples studied in [3], and they are known to exhibit a great deal of diffuse 
scattering in their diffraction patterns. Electron-phonon interactions can also be a 
source of scattering and in quasi-crystals such processes can be enhanced by a plurality 
of Umklapp processes (recall that reciprocal lattice vectors fill the space everywhere 
densely!). The presence of a d band about 2 e V  below EF [l l ,  261 can also contribute 
to the finite lifetime of our ‘free’ electrons. The assumption being made is that in 
spite of these short lifetimes the essential metallic character of the system implies that 
at least in the neighbourhood of the Fermi energy the wavevector k can be taken as 
a reasonably good quantum number. It might happen that a t  some other energies 
there are localized (critical) states which are not characterized by any k-vector at all. 
Since our plane waves are not exact eigenstates, they might have non-zero overlap 
with such hypothetical ‘localized’ states. This mechanism is somewhat analogous to 
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a conventional scattering from structural defects. In the latter case the plane waves 
interact with states localized by a random impurity potential; in the quasiclystalline 
case the states might be localized by the quasi-periodic crystal potential itself. In any 
case, some localization phenomenon originating either from quasi-periodicity or from 
conventional randomness have been reported in FCI quasi-crystals [l, 221. 

Although r appears to be short in one sense, in another it is quite normal for 
alloys. For example, the relaxation time in brass, which lacks the complexity of 
A162,5Cu2sFe12,5 but does possess chemical disorder, is 1.1 x lo-'' s [24], which is 
only 2.5 times larger than in Al,,,Cu,Fe,,.,. Another pertinent system with which to 
compare is the conventional alloy Li,-,Mg,, a BCC solid solution over much of the. 
range of 2. The interband absorption is dominated by the intersection of the Fermi 
surface with only 12 Bragg planes. The Fermi wavevector k, increases smoothly 
with increasing Mg content, providing a series of u ( w )  curves [24], which can be 
described in interband terms by equation (15). A typical interband relaxation time 7 

is 3 ~ 1 0 - ' ~  s (the corresponding Drude value of r is l . 2 ~ l O - ' ~  s) and these times 
show relatively little concentration dependence in the BCC region. In this system, U" 
is not particularly low (almost 5000 R-' cm-'); it corresponds to a total flat area 
on the Fermi surface of about 20%. The difference between r for LiMg and T 

for Al,,,5Cu,Fe,,~5 of a factor of 6 is not unreasonable, especially because residual 
conductivities of alloys are known to vary by factors of 10-100 upon relatively slight 
changes in alloy composition. In any event the r-value of about 0 . 5 ~  lo-', s proposed 
here does not look implausible. However, there remains the question of applicability 
of the nearly-free-electron approach, which in A16z,5Cuz5Fe12,5 appears to be valid. 
Indeed, we estimate the Fermi momentum to be about 1.5 A-l, the Fermi energy 
EF to be about 9 eV, the pseudo-gap A to be about 0.5 eV, the relaxation time 
T to be about 0 . 5 ~ 1 0 - ' ~  s and the damping constant I? = hr to be about 1.4 eV 
We see that although r is three times the pseudo-gaps A, it is still only a sixth of 
EF, which supports the use of the Kubo formula (14) and the nearly-free-electron 
approach. Note that, if there were no band-structure effects at all, the condition 
EFT >> 1 would be equivalent to the  more familiar kFl >> 1. In the present case it 
is not quite obvious what the mean free path 1 = v F r  means, because vF is far from 
being constant on the Fermi surface; it even vanishes at some points. Depending 
on how one defines the average over the Fermi surface the mean free path varies 
from 2 to  8 A; as a consequence, kFl is estimated as being between 3 and 12, 
which is still on the metallic side of Mott's criterion. Estimates of mean free paths 
have recently been made in a phenomenological manner by making use of different 
experimentally determined quantities such as the DC conductivities and densities of 
states as  determined from specific heat measurements [25]. The results are in essential 
agreement with our value with 1 falling into the 3 4  8, range. 

One of the most surprising features of U ( W )  measured in [3] is the unusual low- 
frequency behaviour; the Drude peak appears to he absent and u ( w )  seems to be 
increasing linearly with increasing w. With respect to the apparent absence of the 
Drude peak, the explanation is rather simple; the Drude contribution (13) is actually 
nol entirely absent. Rather, U", the DC conductivity, is so small that the Drude term 
(13) is simply overwhelmed by the large interband term. This explanation is quite 
general and clearly goes beyond the range of applicability of the perturbation theory 
adopted here. Indeed, if one adds to the conventional Drude term (13) a rapidly 
increasing interband term, the total U ( W )  behaves in the following manner: if U" 

is sufficiently large (as is the case in conventional metals), then a(w) indeed has a 
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maximum at w = 0; however, if U" is sufficiently small, the maximum disappears and 
the total a ( w )  increases monotonically (figure 4). This is a combination of trivial 
mathematics and the observation, first made in [18], that, in the presence of scattering, 
ars(w) does not vanish even at w < A. The linear behaviour of a ( w )  reported in 
[3] is a more subtle issue. Our theoretical curve for u ( w )  (figure 4) explains quite 
Well the position of the maximum, and the shape of the curve near it and at large 
w, but, it does not exhibit linear behaviour at very small w (instead, a(w)  = U" + 
constant wz). This discrepancy with experiment is not surprising at all, taking into 
account the extreme simplicity of the model used. Introducing corrections to either 
the spectrum E ( k )  (equation (2)) or to matrix elements M ( k )  in equation (14) might 
well modify the result. Also, the very phenomenological approach (14) based on a 
unique constant T might cease to be valid at very small w.  On the other hand, the 
actual U ( W )  might also not be linear down to zero w. Indeed, if there is no singularity 
a t  w = 0, analyticity requires u ( w )  to switch from linear to quadratic behaviour at 
sufficiently small W .  This is precisely what our theoretical curve (16) does reveal: it 
looks rather linear a t  moderate w,  turning to w 2  at smaller values. Such 'pseudolinear' 
behaviour on the left shoulder of interband peaks occurs in other materials which 
have absolutely nothing to do with quasi-periodicity. What again makes quasi-crystals 
'special' is the apparent absence of the Drude peak at w = 0. Our simple model 
explains this fact as well as the shape, magnitude and the position of the interband 
absorption maximum. However, a more accurate approach is certainly needed to 
investigate the low-w limit. It might well include a band-structure calculation that 
mixes more than two plane waves. The other possible phenomenon which might be 
responsible for linear u ( w )  at low w is touching or overlapping of flat regions, i.e. 
the existence of points on the Fermi surface where the pseudo-gap is zero (cf pure 
AI, [ZS]). This is the subject of the further study. 

Conclusion 

The semi-phenomenological theory developed here qualitatively explains the sharp 
decrease in DC conductivity observed in quasi-crystals as well as more moderate 
suppression of the DOS at the Fermi level. It explains the apparent disappearance 
of the Drude peak in optical conductivity and quantitatively accounts for the 
interband absorption peak. Quasi-periodicity is never explicitly used in the 
course of calculations. Accordingly, the results can be equally well applied to 
periodic approximants of the same alloys. The theory very much relies on the 
icosahedral symmetry to the extent that it is manifested in the Fermi sphereBragg 
plane interactions, as dictated by the Hume-Rothery viewpoint. In this respect 
the consequent agreement with experiment appears to favour the band-structure 
hypothesis over quasi-periodic criticality or localization. 

A short communication of the main results will appear in [29]. 
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